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SUMMARY

In the present paper, the author shows that the predictor=multi-corrector (PMC) time integration for
the advection–di�usion equations induces numerical di�usivity acting only in the streamline direction,
even though the equations are spatially discretized by the conventional Galerkin �nite element method
(GFEM). The transient 2-D and 3-D advection problems are solved with the PMC scheme using both
the GFEM and the streamline upwind=Petrov Galerkin (SUPG) as the spatial discretization methods for
comparison. The solutions of the SUPG-PMC turned out to be overly di�usive due to the additional
PMC streamline di�usion, while the solutions of the GFEM-PMC were comparatively accurate without
signi�cant damping and phase error. A similar tendency was seen also in the quasi-steady solutions to
the incompressible viscous �ow problems: 2-D driven cavity �ow and natural convection in a square
cavity. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: Galerkin formulation; predictor=multi-corrector scheme; streamline di�usion;
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1. INTRODUCTION

In the last two decades, intensive e�orts have been devoted to the development of stabilized
�nite element methods to accurately and stably solve the advection–di�usion (AD) problems
and=or �uid �ow problems. The typical stabilization methods are classi�ed into two families:
One is the family of the Galerkin-least squares (GLS) method [1] whose origin can be traced
back to the streamline upwind=Petrov Galerkin (SUPG) method proposed by Hughes and
Brooks [2]. Actually, the GLS method can be reduced to the original SUPG method, if
low order (i.e. linear) interpolation is used for approximation, or if an equation system is
hyperbolic [1; 3]. The other family of stabilization methods is the Galerkin method enriched
with element-wise bubble functions, which Brezzi et al. [4] proved to be equivalent to the
SUPG methods under a certain condition. The stabilization methods work well, especially
for problems involving unresolvable boundary layers under advection-dominated conditions.
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However, the formulations of the above stabilization methods are usually based upon the
steady AD equations, eliminating the inertia term as a presupposition.
The question the author would like to raise in this paper is how such elimination of the

inertia term can be justi�ed, because the inertia term plays the role of a natural built-in
stabilizer, bringing the upwind information downstream with a characteristic advection velocity
[5]. In fact, the inertia term and the appropriate time integration induce stabilization e�ects
quite similar to the streamline di�usion of the SUPG formulation. Examples are the forward
Euler method supplemented with the balancing tensor di�usivity (BTD) in the Galerkin �nite
element method (GFEM) [6] and the Taylor–Galerkin method [7].
In the present study, the unsteady AD equations are spatially discretized by the SUPG

method (and the GFEM by setting the SUPG parameter � at zero), and temporally integrated
by the predictor=multi-corrector (PMC) scheme. The spatial and temporal formulation is es-
sentially the same as the original SUPG-PMC formulation proposed by Brooks and Hughes
[8]. The present author arithmetically shows that the PMC time integration itself possesses a
stabilization e�ect inducing a kind of streamline di�usion, even if the GFEM is employed for
the spatial discretization. It is also shown numerically that the GFEM transient solutions of
the AD equations are more accurate than the SUPG counterparts, suggesting that the further
addition of the streamline PMC di�usion to the SUPG di�usion is too much to yield accurate
transient solutions. Similar comparative results are shown for the quasi-steady solutions of
incompressible viscous �ow problems.
The paper is organized as follows: In Section 2, the basic equations, boundary conditions,

spatial and temporal discretization are presented. In Section 3, numerical examples are demon-
strated for 2-D and 3-D advection problems as well as 2-D driven and natural convections
in a cavity, comparing the GFEM-PMC with the SUPG-PMC. Finally, conclusions are given,
suggesting ‘Don’t stabilize the solutions—they’re telling you to put back the annihilated inertia
term!’ in the same sense as Gresho and Lee [9].

2. THEORY

2.1. Basic equations

The basic equation is the following 3-D advection–di�usion equation with respect to a passive
scalar variable, c:

ċ+Ujc; j − �c; j; j= s (1)

where Uj, �, and s denote divergence-free velocity �eld, di�usivity and source, respectively.
The superposed dot denotes temporal di�erentiation, while the subscript comma followed
by i, j, or k (=1; 2; 3) denotes partial di�erentiation with respect to co-ordinates xi, xj or
xk (= x; y; z), respectively. It is assumed that the above equation is supplemented by the
following boundary conditions:

c= cBC on �D (2a)

q= qBC on �N (2b)
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The boundaries, �D and �N, do not overlap each other, and cover the whole boundary of
the domain. The �ux through the boundary, q, is de�ned as

q=�c; jnj (3)

where nj denotes the outward unit normal vector on the boundary.

2.2. Spatial discretization

In the SUPG method [2; 8; 10], the weighted residual forms for Equation (1), employing
(wk + wk) as the weighting functions, is written as

∫
�
wk(ċ+Ujc; j − s) d� +

∫
�
wk; j�c; j d�

+�e
∫
�e
wk(ċ+Ujc; j − �c; j; j − s) d�=

∫
�N
wkqBC d� (4)

For spatial discretization, continuous trial solutions, c, and continuous parts of the weight-
ing functions, wk , are approximated by ��c� and ��wk� using tri-linear interpolation functions
�� at node number �; while the discontinuous parts of the weighting functions, wk , are
de�ned as

wk = �Uj��; jwk� (= �[U;∇]wk) (5)

where [ ; ] denotes the vector inner product and the intrinsic time scale, �, is de�ned on each
element as [10]

�=
coth(Peh)− 1=Peh√

[b; b]
(6)

Vector b is de�ned as b=[U;∇]^ where vector ^ denotes the inverse of the geometric
mapping from the local co-ordinates ^=(�; �; �) to the global co-ordinates x=(x; y; z), i.e.
^= f−1(x). The element Peclet number, Peh, is de�ned with the isotropic di�usivity � as

Peh=
[U;U]
�
√
[b; b]

(7)

The resulting ordinary di�erential equations are summarized in the matrix form

[M]{ċ}+ [A]{c}+ [D]{c}= {s} (8)

where [M], [A] and [D] denote the consistent mass matrix, the advection matrix, and the dif-
fusion matrix, respectively. The GFEM formulation can be obtained by eliminating the discon-
tinuous weighting functions or by setting � at zero in the SUPG. In the GFEM, the consistent
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mass matrix, the advection matrix, and the di�usion matrix are expressed as

M= Ae
∫
�e
���� d� (9)

A=UxAe
∫
�e
����; x d� +UyAe

∫
�e
����;y d� +UzAe

∫
�e
����; z d�

≡UxAx +UyAy +UzAz (10)

D= �Ae
∫
�e
��; x��; x d� + �Ae

∫
�e
��; y��;y d� + �Ae

∫
�e
��; z��; z d�

≡Dxx +Dyy +Dzz (11)

where Ae stands for the assembly of element matrices, formed on each element domain �e,
into the global matrix. In Equation (8), vector {c} is composed of unknown nodal values,
while vector {s} results from the source term and natural boundary condition (2b). To evaluate
these integrals, the discrete Del (Nabla) operator method proposed by Tanahashi and Oki [11]
was used to save main memory and computational time.

2.3. Structure of GFEM global matrices

To examine the structure of the global matrices appearing in the GFEM, the matrix components
were calculated in the same manner as Eguchi et al. [12], assuming a 2-D rectangular mesh
evenly spaced by hx and hy in x- and y-direction, respectively. Since the variable is interpolated
by the bilinear functions on each element, the element matrix is explicitly expressed, for
example, as hxhy(1 + ����=3)(1 + ����=3)=16 for the consistent mass matrix appearing in
Equation (9), where ��, ��, �� and �� are the local nodal co-ordinates, taking +1 or −1.
Then the element matrices are assembled into the global matrices, and a matrix-by-vector
component at the row corresponding to an inner node ‘0’ located at (x0; y0) away from the
boundary can be arithmetically derived as follows.

Consistent mass:

[M]{ċ}0 = hxhy(0:25Ċ−1;1 + 1Ċ0;1 + 0:25Ċ1;1

+1Ċ−1;0 + 4Ċ0 + 1Ċ1;0

+0:25Ċ−1;−1 + 1Ċ0;−1 + 0:25Ċ1;−1)=9 (12)

where Cm;n is a component of vector {c} and denotes the nodal value at co-ordinates (x0 +
mhx; y0 + nhy). Similarly, the stencils for the lumped mass matrix, the advection matrix and
the di�usion matrix in x-direction in the GFEM are calculated as follows:

Lumped mass:

[M]{ċ}0 = hxhyĊ0 (13)
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Advection in x-direction:

Ux[Ax]{c}0 =Uxhxhy(−0:25C−1;1 + 0C0;1 + 0:25C1;1

−1C−1;0 + 0C0 + 1C1;0

−0:25C−1;−1 + 0C0;−1 + 0:25C1;−1)=3hx (14)

Di�usion in x-direction:

[Dxx]{c}0 =�hxhy(−0:5C−1;1 + 1C0;1 − 0:5C1;1
−2C−1;0 + 4C0 − 2C1;0
−0:5C−1;−1 + 1C0;−1 − 0:5C1;−1)=3h2x (15)

It is seen that the weight for C0 in the 2-D consistent mass is less than half (0.444), while C0
in the lumped mass is fully weighted, like the mass appearing in the �nite di�erence method
(FDM). It is also seen that the stencils of advection and di�usion of GFEM are di�erent from
those of the second-order centred FDM (e.g. Ux(−C−1;0 +C1;0)=2hx for x-direction advection
Uxc; x at a grid ‘0’), although the stencils of both the GFEM and the FDM coincide under
the 1-D condition. This implies that the GFEM solutions, which behave in the same manner
as the centred FDM solutions under the 1-D steady condition, can behave di�erently under
multi-dimensional and=or unsteady conditions. This is also true for the relation between the
SUPG and the upwind FDM, since these upwind methods converge to the GFEM and the
centred FDM in the di�usion limit. On the other hand, the original SUPG formulation is
based on the 1-D steady ‘optimal’ upwind FDM, with which exact solutions can be yielded
at each grid or node (i.e. super-convergent solution) [2; 8]. These two facts suggest that the
straightforward extension of the SUPG to the multi-dimensional and=or unsteady conditions is
quite questionable. The answer is given by numerical examples in Section 3, comparing the
multi-dimensional unsteady behaviours computed by the GFEM and the SUPG.

2.4. Predictor=multi-corrector time integration

The PMC scheme is employed in a way identical to the formulation proposed by Brooks
and Hughes [8] to temporally integrate the ordinary di�erential system (8), which is simply
rewritten as Ma= s−Kc, omitting the parentheses attached to matrix and vector, and de�ning
a≡ ċ and K≡A+D. Then, the algorithm of the PMC scheme is summarized as

[O] Setup of initial condition
(1) initialize time step number; n=0
(2) give initial condition of c; cn= c0
(3) compute initial condition of a= ċ; an= a0 =M

−1(s −Kc0)
[I] Predictor phase
(1) reset iteration step counter; k=0
(2) compute initial guess of (n+ 1)th time step value; ck = cn +�t(1− �)an
(3) reset (n+ 1)th time step acceleration; ak = 0
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[II] Multi-corrector phase
(1) compute acceleration increment; �ak =M−1(s −Mak −Kck)
(2) update (n+ 1)th time step value; ck+1 = ck + ��t�ak

(3) update (n+ 1)th time step acceleration; ak+1 = ak +�ak

(4) IF (k + 1)¡Kmax,

THEN: bump inner iteration step, k, and iterate [II]
ELSE: advance time; t= t +�t, cn+1 = ck+1, an+1 = ak+1,

bump time step, n, and return to [I] (go to next time step)

In the above, M is the lumped mass matrix, M is the consistent mass matrix, � is a time
integration parameter, and Kmax is a prescribed upper limit of the multi-corrector iteration.
If Kmax =1, the next step value cn+1 is corrected only once in Phase [II], and the one-pass
scheme can be written with a single time integration formula as follows:

One-pass scheme:

M(cn+1 − cn)=�t = (s −Kcn)−�t(1− �)�KM−1(s −Kcn)

+ (1− �)(M −�t�K){an −M−1(s −Kcn)} (16)

In the one-pass scheme, the consistent mass matrix does not have any e�ect on the next
time step value, because ak =0 in Phase [II]. It is expected that the one-pass scheme is
inaccurate because of the phase error induced by the mass lumping as explained by Gresho
et al. [13].
Similarly, the two-pass scheme (Kmax =2) is summarized in the following single-equation

formula:

Two-pass scheme:

M(cn+1 − cn)=�t = (s −Kcn)− ��tKM−1(s −Kcn)

+ (1− �)�2�t2KM−1KM−1(s −Kcn)

+ �(I −MM−1){I − (1− �)�tKM−1}(s −Kcn)

+ (1− �)M{an −M−1(s −Kcn)}

+(1− �)��t(MM−1 − 2I+ ��tKM−1)

×K{an −M−1(s −Kcn)} (17)

where I denotes the identity matrix. In the two-pass scheme, consistent mass matrices appear in
the fourth and last terms on the right-hand side (RHS) of Equation (17), which are numerically
shown to reduce the phase error induced by the mass lumping [8].
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2.5. Structure and property of induced matrix

It is seen in Equations (16) and (17) that the PMC scheme induces various terms in addition
to the forward Euler term (s − Kcn). The most in�uential one would be the second term on
the RHS of Equations (16) and (17). To see the structure and property of the induced term,
let us restrict ourselves to the pure advection case without any source on the 2-D rectangular
mesh considered in Section 2.3. Then the second term −��tKM−1(s −Kcn) can be reduced
to ��tAM−1Acn, and the matrix-by-vector component at the row corresponding to the inner
node ‘0’ can be calculated as follows, noting M−1{c}0 = h−1x h−1y {c}0 and A=UxAx +UyAy.

AM−1A{c}0 = h−1x h−1y (U 2
x A

2
x +UxUyAxAy +UxUyAyAx +U

2
y A

2
y){c}0 (18)

where the components associated with matrices A2x, AxAy, AyAx and A2y have the following
structures:

[Ax]2{c}0 = h2y (1C−2;2 + 0C−1;2 − 2C0;2 + 0C1;2 + 1C2;2

+8C−2;1 + 0C−1;1 − 16C0;1 + 0C1;1 + 8C2;1

+18C−2;0 + 0C−1;0 − 36C0 + 0C1;0 + 18C2;0

+8C−2;−1 + 0C−1;−1 − 16C0;−1 + 0C1;−1 + 8C2;−1

+1C−2;−2 + 0C−1;−2 − 2C0;−2 + 0C1;−2 + 1C2;−2)=144

(19)

[Ax] [Ay]{c}0 = [Ay] [Ax]{c}0
= hxhy(−1C−2;2 −4C−1;2 +0C0;2 +4C1;2 +1C2;2

−4C−2;1 −16C−1;1 +0C0;1 +16C1;1 +4C2;1
+0C−2;0 +0C−1;0 +0C0 +0C1;0 +0C2;0
+4C−2;−1 +16C−1;−1 +0C0;−1 −16C1;−1 −4C2;−1
+1C−2;−2 +4C−1;−2 +0C0;−2 −4C1;−2 −1C2;−2)=144

(20)

[Ay]2{c}0 = h2x (1C−2;2 + 8C−1;2 + 18C0;2 + 8C1;2 + 1C2;2

+0C−2;1 + 0C−1;1 + 0C0;1 + 0C1;1 + 0C2;1

−2C−2;0 − 16C−1;0 − 36C0 − 16C1;0 − 2C2;0
+0C−2;−1 + 0C−1;−1 + 0C0;−1 + 0C1;−1 + 0C2;−1

+1C−2;−2 + 8C−1;−2 + 18C0;−2 + 8C1;−2 + 1C2;−2)=144

(21)
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If advection is only in x-direction (i.e. Uy=0), then a value proportional to Equation
(19) is added in the time integration process. The physical meaning of Equation (19) is the
x-direction di�usion, which is computed by the 15 values at (x0−2hx; y0 +nhy), (x0; y0 +nhy)
and (x0 + 2hx; y0 + nhy) in the neighbour of node ‘0’ with n=− 2;−1; 0; 1 and 2. If the
advection is skewed by an angle of 	, let us take new co-ordinates (x′; y′) where the x′ axis
is parallel to the advection direction, and de�ne the following rotation matrix R:

R=

(
cos 	I − sin 	I
sin 	I cos 	I

)
(22)

where I denotes the identity matrix whose dimension is equal to the number of nodes. Then
the uniform advection vector observed in the new co-ordinates, (Ux′e 0)T, is related to the
original one, (Uxe Uye)T, with the rotation matrix R as follows, with e=(1 1 · · · 1)T and
0=(0 0 · · · 0)T.

(Uxe Uye)T =R(Ux′e 0)T (23)

Therefore, the induced term AM−1A{c}0 is expressed as follows, using the above relation
and noting M−1{c}0 = h−1x h−1y {c}0 and A=UxAx +UyAy:

AM−1A{c}0 = h−1x h−1y (UxAx +UyAy)2{c}0

= h−1x h
−1
y (Ax Ay)

(
UxI

UyI

)
(UxI UyI)

(
Ax

Ay

)
{c}0

= h−1x h
−1
y (Ax Ay)R

(
Ux′I

O

)
(Ux′I O)RT

(
Ax

Ay

)
{c}0

= h−1x h
−1
y (Ax′ Ay′)

(
U 2
x′I O

O O

)(
Ax′

Ay′

)
{c}0 (24)

where O is the zero matrix and (Ax′ Ay′) is the advection matrix computed in the new
co-ordinates system which is related to the original advection matrix (Ax Ay) as follows
(see Eguchi et al. [12] for proof, taking #=− 	 in the paper):

(Ax′ Ay′)= (Ax Ay)R=(cos 	Ax + sin 	Ay;− sin 	Ax + cos 	Ay) (25)

Equation (24) suggests that the induced matrix AM−1A represents the di�usion acting
only in ± x′-direction (or streamline direction) without crosswind di�usion. Then the PMC
streamline di�usion is similar to the e�ect of the SUPG in such a sense, but has a di�erent
structure.
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3. NUMERICAL EXPERIMENTS

3.1. Stability of the PMC scheme

In order to see the e�ects of the time integration parameters, � and �t, on the numerical
stability, the rotating cone problem is solved by the PMC (two pass) scheme with the GFEM
and the SUPG. The computational domain is a circular disc with radius of

√
2, which is

divided into 50× 50 �nite elements. A �xed velocity �eld of anticlockwise rigid rotation is
given by de�ning (Ux;Uy)= (−y; x), while the di�usivity is negligibly small (�=10−12). The
initial condition and the boundary condition are given as follows.

Initial condition: c=0 if r¿0:4 where r2 = (x − 0:6)2 + y2

c=0:5(1 + cos
r=0:4) otherwise

Boundary condition: c=0 on the whole boundary

Figure 1 shows the maximum and minimum values of c in the domain after one revo-
lution in variation with the parameter � while �xing �t at 0.005. The maximum Courant
number is estimated around 0.455 at the smallest mesh on the disc periphery where the ad-
vection velocity is largest. Figure 2 shows the similar �gure as the function of the time
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Figure 1. E�ect of time integration parameter in the PMC scheme (�t=0:005).
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Figure 2. E�ect of time increment in the PMC scheme (�=0:6).

increment �t with �xing � at 0.6, because the GFEM-PMC solution around �=0:6 is most
accurate in Figure 1. These �gures show that the SUPG solutions are rather insensitive to the
parameters, while the GFEM solutions become unstable under large-�t or small-� conditions.
However, the GFEM solutions seem more accurate than the SUPG solutions as far as the
GFEM solutions are stable, since cmax =1 and cmin =0 for the exact solution.

3.2. Accuracy

The accuracy of the spatial discretization and the time integration is numerically examined
with the above rotating cone problem among the following explicit schemes:

(i) GFEM-PMC: present formulation with GFEM (one pass=two pass, �=0:6).
(ii) SUPG-PMC: present formulation with SUPG (one pass=two pass, �=0:6).
(iii) FE-BTD: forward Euler method with GFEM and balancing tensor di�usivity [6].
(iv) AB2: second-order Adams–Bashforth method with GFEM.
(v) AB3: third-order Adams–Bashforth method with GFEM.

The mass matrix is lumped in all the schemes whenever the inversion is required and the
time increment is �xed at �t=0:005 for all computations. Then, the average Courant number
is estimated at 0.06 based on average mesh width and velocity at the initial cone center.
Figures 3(a)–3(f) show the terminal results after one revolution, computed by the GFEM-
PMC (one pass), the GFEM-PMC (two pass), the SUPG-PMC (one pass), the SUPG-PMC
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Figure 3. Bird’s eye view of cone elevation after one revolution: (a) Galerkin-PMC (one pass) scheme;
(b) Galerkin-PMC (two pass) scheme; (c) SUPG-PMC (one pass) scheme; (d) SUPG-PMC (two pass)

scheme; (e) forward Euler with BTD scheme; and (f) third-order Adams–Bashforth scheme.

(two-pass scheme), the FE-BTD and the AB3, respectively. Table I quantitatively shows the
maximum and minimum values of c and the phase errors after one revolution. The results
indicate the superiority of the GFEM-PMC (two pass) to the other schemes in terms of the
damping properties and phase error, while the SUPG solutions are damped most.
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Table I. Maximum and minimum values of c, and the peak position (phase errors) after one revolution.

Schemes Quantities

Max. value Min. value Peak position
(exact = 1) (exact = 0) (exact = 0◦)

GFEM-PMC (one pass) 0.9722 −0:3887 −21◦ (lag)
GFEM-PMC (two pass) 1.007 −0:0431 0◦

SUPG-PMC (one pass) 0.3328 −0:0168 −11◦ (lag)
SUPG-PMC (two pass) 0.7296 −0:1157 +11◦ (advance)
Forward Euler+BTD∗ 0.8527 −0:2148 −16◦ (lag)
Second-order Adams–Bashforth 0.8550 −0:2250 −16◦ (lag)
Third-order Adams–Bashforth 0.8546 −0:2257 −16◦ (lag)
∗BTD: balancing tensor di�usivity.

3.3. 3-D rotating ball problem

Similarly, the rotating ball problem in 3-D space is solved with the PMC (two pass) using
the GFEM and the SUPG for spatial discretization. The computational domain is a sphere
with radius

√
3, which is divided into 40× 40× 40 �nite elements. The velocity �eld of rigid

rotation is given by de�ning (Ux;Uy;Uz)= (−y; x; 0), while the di�usivity is negligibly small
(�=10−12). The initial condition and the boundary condition are given by

Initial condition: c=0 if r¿0:5 where r2 = (x − 0:75)2 + y2 + z2

c=0:5(1 + cos
r=0:5) otherwise

Boundary condition: c=0 on whole boundary

The time integration was performed with �=0:6 and �t=0:005, until t=3:14 (half-
revolution). The average Courant number is estimated at 0.054 based on the average mesh
width and the velocity at the initial ball center. Figures 4(a) and 4(b) show the iso-value sur-
face of c=0:1 of the terminal results computed by the GFEM-PMC (two pass) and the SUPG-
PMC (two pass), respectively. The peak value of c and the phase error of the GFEM are 1.028
and 0◦, respectively, while those of the SUPG are 0.772 and 6:34◦

(advance).

3.4. Driven cavity �ow

The GFEM-PMC and the SUPG-PMC schemes for the advection–di�usion equation can be
extended to the unsteady Navier–Stokes equation to solve the �uid �ow problem. The PMC
algorithm for incompressible viscous �uid �ow problem is shown in the author’s preceding
paper [14]. The 2-D driven cavity �ow problem was solved by the GFEM-PMC (two pass)
and the SUPG-PMC (two pass) using a 3-D slab model of 1× 50× 50 �nite elements. The
upper lid, including the corners (i.e. ‘leaky’ lid), is driven at the velocity of unity, while the
other three walls are assumed as non-slip boundaries. The kinematic viscosity of �uid, �, is
varied in the range 0.01–0.0002 to set the Re number at 100–5000. Figures 5(a) and 5(b)
show the contours of the stream function of the quasi-steady results (Re=1000) computed

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1037–1052



UNSTEADY ADVECTION–DIFFUSION EQUATIONS 1049

X

Y

Z

Initial
condition

X

Y

Z

Initial
condition

(a) (b) 

Figure 4. Iso-value (c=0:1) surface after half-revolution of ball computed by PMC (two pass) scheme:
(a) Galerkin method; and (b) SUPG method.

Figure 5. Quasi-steady stream functions of driven cavity �ow (Re=1000) computed by PMC
(two pass) scheme: (a) Galerkin method; and (b) SUPG method.

by the GFEM and the SUPG, respectively. It is seen that the intensity of the primary center
vortex is weaker in the SUPG solution than that of the GFEM, and so are the secondary and
third corner vortices. Figure 6 shows the absolute values of the minimum stream function
at the primary vortex center in variation with the Re number, comparing with the reference
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Figure 6. Absolute value of minimum stream function as a function of Re number.

solution given by Ghia et al. [15]. It can be seen that the SUPG solutions deviate from the
reference solutions more than the GFEM solutions as the Re number increases, though all the
solutions agree well at low Re number.

3.5. Thermal cavity �ow

The 2-D natural convection in a bi-unit square cavity was similarly solved by the GFEM-PMC
and the SUPG-PMC, using a 3-D slab model of 1× 40× 40 �nite elements. Figures 7(a) and
7(b) show the contours of the non-dimensional stream function, 	, in the quasi-steady state
for the case of Pr=0:71 and Ra=106. The non-dimensional numbers, i.e. Prandtl number,
Rayleigh number and Grashof number, are de�ned as Pr= �=�, Ra=PrGr, Gr=UL=� where
�, U and L are thermal di�usivity, representative velocity and the cavity height (or width),
respectively. In the present case, the representative velocity U is de�ned as g��TL2=�, where
g is the gravitational acceleration; � is thermal expansion coe
cient; and �T is the temper-
ature di�erence between the hot and cold walls. It can be seen in the �gure that the GFEM
solution exhibits the center symmetry, whereas the SUPG solution does not. The quantitative
comparison is summarized in Table II with the reference solution given by Comini et al. [16].
It is seen that the solution of the GFEM agrees better with the reference solution than that
of the SUPG.

4. CONCLUSION

In the present paper, the author has arithmetically derived the streamline di�usion term induced
during the predictor=multi-corrector (PMC) time integration even though the centred spatial
discretization was employed for the advection–di�usion (AD) equations. This suggests that the
inertia term and the time integration itself can play a role of a sort of ‘upwind stabilization’.
Since the theories of the SUPG and other stabilization formulations are usually constructed
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Figure 7. Quasi-steady stream functions of thermal cavity �ow (Ra=106;Pr=0:71) computed by PMC
(two pass) scheme: (a) Galerkin method; and (b) SUPG method.

Table II. Quantitative comparison of thermal cavity �ow solutions.

Schemes Quantities

Stream function
|	|max

Averaged Nu†

upper: hot wall
lower: cold wall

Max. local Nu
upper: hot wall
lower: cold wall

Min. local Nu
upper: hot wall
lower: cold wall

GFEM-PMC 16.87∗ 8.826 17.51 0.970
(two pass) 8.826 17.51 0.970

SUPG-PMC 17.97∗ 8.695 17.09 1.109
(two pass) 8.699 17.50 0.939

Comini et al. [16] 16.81 8.825 17.40 0.979

∗The value is multiplied by 106(=Ra) to compare with the reference solution [16] where the representative velocity
is de�ned as �=L.

†For the de�nition of Nu (Nusselt number on wall), see the reference paper [16].

upon steady AD equations neglecting the inertia term, such formulations do not have the
advantage of the built-in stability inherent in the unsteady AD equations. On the other hand,
starting with the unsteady AD equations and appropriately integrating in time before or after
centred spatial discretization, one can probably obtain reasonably accurate and stable solutions
as shown in the GFEM-PMC scheme in the present study as well as in the other schemes
proposed previously [5–7].
The present numerical tests demonstrated that the transient solutions for the unsteady AD

equations and the quasi-steady solutions for the unsteady incompressible NS equations were
overly di�usive or viscous with the SUPG. Thus, an SUPG user should be cautious of the
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overall numerical di�usion in solving unsteady problems because his time integrator could add
excessive di�usivity to the SUPG di�usivity that is appropriate in quantity only for steady
equations. The SUPG method and other stabilization methods seem e�ective only for problems
with unresolvable boundary layers, as the inventor recently has interpreted the stabilization
methods as a sort of subgrid scale models [17].
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